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ABSTRACT 

Consideration of the proximity effect, electron-phonon coupling and 

size quantization results in a peculiar behavior of the critical tempera-

ture Tc of a contact, containing superconducting and semimetal (or 

se~iconductor) thin films. The method of thermodynamic Green function is 

applied. The dependence of Tc on the thickness of the barrier is 

discussed. The size quantization leads to additional oscillations of 

Tc and to the possibility of observing peculiar charge density waves. 

The experimental data are discussed. 
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I. INTRODUCTION 

It is well-known that systems containing a contact of super

conducting and normal films possess very i~teresting physical properties. 

In this paper we consider the situation when the normal film is a 

semimetal (SM) or semiconductor (SC). SM and SC films are characterized 

by a number of peculiarities which allow one to observe experimentally 

some interesting phenomena. 

Systems containing thin superconducting and not-metallic films have 

been studied by several experimental groups.£1-4] The.dependence of 

the critical temperature Tc on the thickness of the non-metallic film 

-was observed. Usually, this dependence is non-monotonic. 

The properties of superconductor-semimetal (S-S}i) and superconductor

semiconductor (S-SC) systems depend on a number of different factors. 

That is why the values of ·different parameters and, first of all, Tc can 

vary very noticeably. We consider here the influence of several main 

factors: 

1. The proximity effect. The Cooper pairs can move into the non

metallic film in the presence of a good electric contact, and 

this results in the appearance of an induced superconducting 

state of the SM or SC film. The back flow of electrons also 

exists. 

2. The size quantization (SQ) of the transverse motion. The pheno

menon is characterized by oscillations of the density of states. 

Tite best conditions for this effect are realized in 



thin semimetal and semiconductor films (see below~, that is, in 

the presently considered case. 

3. The change of the phonon spectru~ caused by non-metallic 

covering. This change also affects the critical temperature. 

Note that the peculiarities of the dispersion relation lead to 

the appearance of specific charge density waves. 

We take into account all the mentioned factors. We focus on the 

problem of calculation of Tc• The effect of the proximity and the 

size quantization on other properties of the considered system will be 

examined in the framework of the phonon model elsewhere. 

The plan of the present paper is as follows. Section II addresses 

the problem of obtaining the main equation. We use the method of 

thermodynamic Green functions and take into account the electron-phonon 

interaction directly. We·consider the effect of covering on Tc in 

Section III. The proximity effect, the size quantization and specific 

charge density waves are discussed in Sections IV and V. In Sec. VI we 

examine the case when the effective constants of both films are not 

equal to zero. Note, that the results of Sections II, IV, VI can also 

be applied to the situation when both films are metallic. 
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II. MAIN EQUATIONS 

Consider a sys.tem containing superconducting (a) and normal (B) 

thin filns. lve shall consider in more detail (see below, Section V) the 

~ase, when B film is a semimetal (or a semiconductor). 

Denote by Tca the critical temperature of the isolated super

conducting film and suppose the thicknesses La and Ls satisfy the 

conditions La « I;, Ls << I;, where ; is the coherence length. }tore

over, it is supposed that the metallic film is "dirty" in the Anderson 

sense.[S] The size quantization has been observed exp~rimentally by 

investigation of thin films in the region 10 A ~ Ls ~ 103 A[6-9] 

_(see, e.g., the excellent reviewl10]). Hence,the mentioned conditions 

are perfectly realistic. 

Under these conditions we can use the HcMillan model of the proxi

mity effect.[11] The electron-phonon interaction considered explicit

ly was included in the McMillan model in Ref. [12] for the purpose of 

calculating the energy g~p function. 

To calculate the critical temperature of S-SM or s-se system it is 

very convenient to use the method of thermodynamic Green function (see, 

e.g. Refs. [13,14]. Let us introduce the self-energy parts r2a and 

I:2~ describing the pairing in the "a." and "(3" films. The equations 

for the self-energy parts are (Fig. 1) 

Fig. 1 



'; 
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or, in the analytical forM: 

D = w2(q)/[w2(q) + (wn-wnv)2] is the phonon Green function, 

wn = (2n+l)~T, ga2(p,p') describes the electron-phonon interaction, 

Fa and Fa are anomalous Green functionsfl5-17J 

a + a + [ 2 2 2 + (a) 2 
+ 

F (w ,p) =- r.2 (w ,p)/ w Z + ~ (p) + E2 (wn,p)] n n n a a 

(l) 

(4) 

Here ~a;e is the energy of an ordinary electron referred to the Fermi 

level, Za;B is the renormalized parameter, T is the tunneling matrix 

element.[l8] The Coulomb pseudopotential ~*can be included in the 

usual way. 
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Equations (1)-(3) are written for the case when ga = 0. Hence, 

the existence of pair condensate in the B film is due to the proximity 

effect only. The case gS f 0 is considered below (see Sec. VI). 

-The electron-phorion interaction is taken into account directly. We 

restrict ourselves to the consideration of the phonon model with weak 

coupling (see, e.g., Refs. [19,20}. The consideration of the strong 

coupling is straightforward and will be given elsewhere. 

The renormalized parameters are connected (in the weak electron-

phonon coupling approximation) with the proximity effect only and they 

are equal to (see Ref. [llJ): 

Here 

"" 

.~here "a and "a are the densities of states (per unit of volume). 

The quantity rea can be written in the form (see Ref. [11]): 

(4') 

(5) 

(6) 

(6') 

where VF
1 

is the. Fermi velocity, a is the barrier penetration probabil

ity, and B is a function of the ratio of the mean free path to the film 

thickness. 
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Our goal is to calculate Tc• Tc can be evaluated from Eqs. 

(1)-(4). If T = Tc, we should put ra = 0 and Ea = 0 in the 

denominators of (4). Introduce the functi~n ca(wn)l T = 
c 

(E2(wn)IT )/(1-T/Tc)l/2. According to Eqs. (1)-(4), we 
c 

obtain: 

Ca(w ) = Ca (w ) + r 
n 2,ph n ae 

The term caph(wn) is described by Eq. (3) and can be written 

in the form: 

2 ca(w ,) 
ca (w ) 1T T l I dw g (w) w n = X 

ph n a w2+(w -w , ) 2 
.,w , I Z a( w , ) w ' n n n n n ITc 

(7) 

(8) 

(9) 

We transformed to integration over frequencies and introduced the 

function (see, e.g., Refs. [19,20]. 

g(w) qdq 
dw 

2 2 s q 

2 w 
y 

j 
(10) 

where I; is the Frohlich parameter, .!1 is the phonon momentum, s is the 

velocity of sound, PF is the Fermi momentum, Yj(q) ....;1, and j is the 

order number of the phonon branch. 
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The function g(w) can be written in the well-known form:[21] 

g(w) = a(w)F(w), where F(w) describes the electron-phonon interaction. 

This function can be found from tunnel measurements.[22] 

Based on Eqs. (7) -and (8), one can express ca in terms of 

(l+r 
8
1 w )(l+r

8 
1 w ) n · n a n 

w 
n 

(11) 

Using this expression and Eq. (9) we arrive at the following equation: 

2 1 l+re /w , 
1 2'11'T 1 I dwg (w) w a n (12) ""' • • 

w ,>O a 2 W I 1+(raB+rBa)/wn' IT w+w, n n n . c 

We took advantage of the weak coupling approximation. If one 

calculates Tc in this approximation, one can neglect ·the term wn in 

the denominator of the integrand in Eqs. (3), (9). As was shown by the 

author in[l9], this approximation is valid to within small corrections 

:f,n the coefficient before the exponent in the expression describing 

Tc• This approximation allows us to neglect the dependence of en on 

wn and we arrive at Eq. (12). 

Equation (12) allows us to calculate the critical temperature. It 

can be rewritten in the form: 

2 
1 "" J dw g (w) 2'11'T 1 w 

a w )0 (w2+w2)w 
n n n 

(13) 
2 

1 - r f dw g (w) 2'11'T 1 w 
" na a w )0 (w2+w2)w w +r n n n n 



. . 

The sums on the right-hand side of Eq. (13) can be evaluated and we 

obtain 

I = J dw g (w) ln Zwy 
1 a ~T c 

I - raS 
J dw g '"'' {[ vc!. + _r_> - 1/J(~)] = --

2 r a 2 2~T 2 c 

2 r2 
ln 2wy} :X 

w 
+ 

w2+r2 w2+r2 ~T 
c 

where r = faS + faa$ We neglect the small term [-~wf/(2(wlrr2)) 

in the brackets in Eq$ (16); y = 1.78. 

We see that the Vqlue of T~ depends on the function ga(w) and 

on the term Iz describing the proximity effect. According to Eqs. 

(6) and (16) the term Iz depends on the density of states vB. 

We shall consider (see below, Sec~ VI) the case when B film is 

(14) 

(15) 

(16) 

semimetal or semiconductor. The interesting features of S-SM and S-SC 

systems are connected with the peculiarities of the density of states in 

'these films. 

It is worth noting that the function ga(w) differs 

from the function ga0 (w) describing the phonon spectrum and the 

electron-phonon interaction in an isolated metallic film. We consider 

thin metallic films and they are very sensitive to the covering in the 

sense of the change of ga0 (w). 
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The function ga(w) can be written in the form: 

where ga(1)(w) is due to the influence of the covering. Denote by 

Tea : Tc(Ls = 0) the critical temperature of an isolated a film. 

Tea is satisfied by the equation: 

1 ... 

Using (18), we can reduce Eq. (14) to the form: 

T -1 dw g(l) (w) 1 
2wy c I ln- = A n--

Ta a a 'ITTa 
c c 

rae -1 I dw g (w) l [ w(!. + _r_ ) - $(2.) J -- A 
r a a 2 2'1TT 2 c 

2 r2 (!) 
+ ln 

2wy I X 

w2+r2 w2+r2 'ITT c 

where 
A = I ga(w) dw a 

(17) 

(18) 

(19) 

(20) 

Equations (14)-(16) (or Eq. (19» are the basic equations of the theory. 

The first and second terms on the right-hand side of Eq. (19) describe the 

influence of different factors on -Tc• 
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III. THE CHANGE OF THE PHONON SPECTRUM 

As is well known, covering results in a distortion of the initial 

phonon spectrum, in the appearance of new modes and so on. It is 

particularly important in the investigation of thin superconducting 

films. 

The influence of covering can be considered by analogy with the 

author's paperf23] on the change in Tc in superconductors which 

contain complex molecules. 

The function &a(w) can be written in the form Eq. {17). Suppose 

g (1) > 0 that is the covering leads to an additional attraction a ' , 

_between electrons. The critical temperature Tea of the isolated a 

film satisfies Eq. (18). Denote by ~Tc : Tc' -Tea the change 

of the critical temperature caused by the term ga(l)(w). Tne 

quantity Tc', which is equal to the value of the critical temperature 

in the absence of the proximity effect, satisfies the equation (see Eq. 

(14), (15)): 

1 J dw g (w) ln 2wy 
a 1YT 1 

(21) 

c 

According to Eq. (18) and (21), we obtain 

ln ln (22) 

where <w>(1) denotes the mean value in the sense 
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<w> (1) 
.,_1 f dw g(l)(w) w 

1n --
Ta A1 a Ta 

c c 

>.1 "" f dwg(l)(w) 
a 

and Aa. is defined by Eq. (20). According to Eq. (22), we obtain 

Usually Al((Aa,• We find then 

6T AI 2<w> (1 )Y c ln ---
Ta A 'll'Ta a c c 

If the function gaO)(~) corresponds to the 
. 

then <w>O) ~ WI additional peak at w ~ w1, 

6T c 

appearance of an 

and we obtain 

(23) 

(24) 

(25) 

The change of Tc can be noticeable because of the presence of large 

logarithmic factors. If for example, AI/A ~ O.I and Tca./w1 ~ 0.1 

then 6Tc/Tca ~ 25%. Even if AliA ~ lo-2 and Tca!w1 ~ Io-2, 

then the increase of Tc can reach several percent. 
' 

Equations (24), (25) relate 6Tc' to measureable quantities. 

The quantities Aa,, Al can be obtained from tunnel measurements. 



If the covering is characterized by the existence of soft modes, 

this leads to an increase of Al and Tc• Size quantization results 

in the appearance of on additional softening mechanism (see below, Sees 

V). 

The increase of Tc as a function of Le relative to Tea is . 
observed often experimentally in the region of small t 8 -a£1-4) 

(a is atomic distance) by the investigation of the systems Tl-Ge,£11 

Mo-e, Te-e, v-e,£2] Al-Sio,£3], Pb-Ge and Pb-Si.[4] This increase 

is due to the considered mechanism 8 s role in the region of small t 8• 

Note that this increase of Tc cannot be coupled with the term I2 in 

Eq. (14), because the proximity effect tends to diminish the value of 

Tc (see below). 



-13-

IV. PROXIMITY EFFECT 

1. Critical temperature 

Let us consider again the basic Eqs. (14-16). Equation (13) can be 

rewritten in the form: 

T r al3 1 
f d"' g("'l { [w(~ + z:T) c ln- ... -- .. _ 

T' r A c a 

~(1)] 
2 r2 (26) 

w + ln 
2"'Y} 

w2+r2 w2+r2 1fT c 

Here Tc' is the solution of Eq. (19) and corresponds to the value 

of Tc in the absence of the proximity effect. It is worth noting 

that, generally speaking, Tc' * Tea (see Sec. III). The equalit~ 

Tc' =Tea is valid if it is possible to neglect the change of the 

.phonon spectrum. 

Consider the case r >> Tc• Using Eq. (26) and the asymptotic 

expression of the di-gamma function (~(z) = ln z), we obtain 

Hence, we 

where the 

ln 2ry 
1fT c 

arrive at the following equation: 

T• raR 2(u(w))y c ln ln- ... --
T' .r wT c c-

mean value is to be understood in the sense 

ln (u(w)) "' .l f dw g (w) ln u(w) 
T~ ~ a T ... a c 

(27) 

(28) 

(29) 



.• 

and 

u(w) = 1-o o r w 
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"" 

After simple calculations we finally obtain 

T ... T' ( 1rT~ \ 
c c 2<u>y} 

where 

(30) 

(31) 

(32) 

and Tc' and <u) are defined by Eqs. (19) and (29). Equation (31) is 

valid for an arbitrary ratio of <w> and r. 

According to Eq. (6), we obtain 

(32') 

Note that if films "a .. and "B" are ordinary metallic films, then 

(in the effective mass approximation) 

a1 2 
\1 ... m PF 11' a a 

and hence, 

. • (33) 

(34) 

Fermi momenta. If film "13" is a semimetal or degenerate semiconductor 

and is not size quantizing, Eqs. (31)-(34) are also valid. In this 

connection PFS - n1/3, where n is the electron concentration. 

Then a and Tc can vary as functions of n. The special case of size 

quantization will be considered helow (Sec. V). 
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It is very convenient to present the dependence Eq. (30) in the 

fom 

(35) 

or in the following dimensionless form: 

y ... (36) 

where y = u/r; t = oo/r. The function y(t) is shown on Fig. 2. We see 

that if t is small (w((f), y = t and u = oo. In the opposite case of 

large t(oo))f) the quantity u ~ 1 and A = r. 

Consider Eq. (31) and examine the limiting cases. Equation (29) 

can be written in the form 

... K ln .!:_ ·+ K ln <oo> (37) 
1 T 2 T c c 

where 

(37') 

Suppose that r << <oo>, or, more exactly, K2 << 1. Then K1 = 1 

and, according to Eq. (37), <u> = r. Then we arrive at the following 

equation: 

(38) 

where p is defined by Eq. (32). 
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If the change of phonon spectrum _is small, then Tc' "" Tc a and we obtain. 

T Ta ( 1rT~ ) 

0 

( 38' ) 
c "" c \ 2fy 

This expression was obtained by McMillan.[ll] If~ is large 

(f)) <w>, or, more precisely, K1 << 1), then K2 = 1 and (u) = (w). 

Naturally, these estimates are consistent with the estimates of the 

function y(t) (see above). Then we arrive at the expression (if Tc' = 

Tea), which corresponds to Cooper's case:£11,24] 

(39) 

In the general case one ~hould use Eqs. (28)-(31) which are valid for an 

arbitrary relation between r and (w). 

If r ~ Tc, (w) )) Tc, Eq. (31) is not applicable. According to 

Eq. (26), we obtain in. this case 

1n (T /T') = -F(p,f/T ) c c c 

F(p ,f/T ) 
c 

(40) 
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The function F does not depend on the phonon spectrum directly. Eq. 

(40) was considered in Ref. [11] (in the case, when Tc' "'"T~<X). 

Note, that if p << 1, we obtain 

T = T' exp {-F(p,f/T')} c c c 
(41) 

According to Eq. (31), Tc strongly depends on the ·quantity (u). 

The value of (u) (see Eq. (29), (30)) is related to rand to the 

function g(w), or, roughly speaking, the value of (u) depends on the 

relation between r and (w). r and <w> can be varied very noticeably and 

this results in the corresponding change of Tc• 

2. Dependence T~ 

The peculiar behavior of (u) (see Fig. 2) allows us to propose the 

following experiment. The parameter r = ras + rsa contains (see 

Eq. (6)) the tunneling matrix element and its value depends on the 

thickness of the barrier, e.g., on the thickness of oxide d. One should 

choose a superconductor with a small value of <w>, that is, with a low 

phonon mode. The perfectly realistic situation is that of r )) (w) in 

the region of small d. The critical temperature is described by Eq. 

(31) with (u) = (w).. Let the thickness "d" increase gradually and 

consider the dependence Tc(d). Gradual increase of d means the. 

gradual decrease of the coupling. An increase in "d'' results in a 

decrease in r. The critical temperature does not change noticeably 

until the inequality r )) <w> holds. Then we come to the region d ) de 

the quantity <u~ .= r (see Fig. 2), and the subsequent increase of 

d and the corresponding decrease of r result, according to Eq. (31), 
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incre~ses with an increase of d in the region d ) de• The increase of 

Tc(d) described by Eq. (31) continues until r >> Tc• When .r ~ Tc, 

Eq. (31) is not applicable but then we can use Eqs. (40) and (4t)e It 

is easy to see that if r << Tc, the critical temperature tends to 

Tc' (if it is possible to neglect the term ~(t) which is due to 

the oxide, then Tc' =Tea). Hence, an increase in d gradually 

leads to the value Tc = Tc'• and this equality is natural for large 

value d. 

Hence the change of Tc is described by the following regularity. 

If d < de, the critical temperature remains almost constant. An 

increase in d in the region d ) de is accompanied by a noticeable 

increase of Tc up to Tc'• We have seen that r(dc) = (w). If function 

g(w) and the quantities va and vB are known, it is possible to calcu

late (w) and r(dc). Then the dependence Tc(Ls) (if d = de) can be 

verified experimentally • 

.3. Maximum Tc 

We see from Eqs. (26) and (.3t) that the proximity effect results in 

a decrease of Tc* The dependence Tc(La), which is caused by the 

proximity effect, can be non-monotonic (see below), but the inequality 

Tc ( Tc' always holds. Hence, the contributions of the terms It 

(if ga(t) > 0) and Iz to a change of Tc (see Eq. (14)) have opposite 

signs. If Le is small' (La- a, a is atomic distance) the contribution 

of Iz is small, because <rae/r) --L6/La• The term It also contains 

the small parameter 'A.1/'>...a (see Eq. (24)), but a perfectly realistic 

situation is when the contribution of I1 dominates. Then the covering 
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results in an increase of Tc relative to Tea (in the region of 

Le -a). If La >> a, the term I2 becomes more important, because 

the effect of the change of the phonon spectrum on the electron 

system the a film is limited by the ato~ic distance. On the other hand, 

the term !2 increases as La increases. Hence the quantity 

3Tc/3Ls!La>>a depends mainly on !2 ann Tc decreases with 

increase of Ls• Therefore we come to the conclusion that Tc should 

have a maximum Tcm""' Tc' in the region La """ a. 

A maximum of Tc in the region of small La was observed 

experimentally in[l-4] (see Fig. 3). Mikheeva et al.[2] have 

developed a very precise method of determination of the thickness of 

films. They observe Tc in the Mo-e, Te-e and v-e systems, when max 

Lc = 5 A. The system Al-SiO was considered by Sixl.[3] The depen-

dence Tc on the thickness of the SiO coating is characterized by 

TCmax' when LsiO = 3 A. The same result was obtained by Orlov et 

al. by the investigation of Pb-Ge and Pb-Si systems.£4] The first 

observation of Tc was made by Naugle[l] for the system Tl-Ge in max 

the region of small Lee = 10 A. Note that the investiga~ions£2-4] 

are characterized by a more precise determination of the thickness of 

the films. It is worth noting that the existence of this maximum Tc 

cannot be explained by the proximity effect, because the proximity 

effect in the absence,of a change of the phonon spectrum results in the 

inequality: Tc <Tea, which contradicts the experimental data.[l-4] 

The appearance of Tcmax can be explained by the combination of 

the change of the phonon spectrum (term It) ann the proxi~ity effect 

... 



.. 
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(term Iz). Note that the absence of Tc in the Sn-ce£11 Pb-c[4] max . 

systems is connected with the small value of the function r.e(1)~ 

According to our explanation, an increase of La does not affect 

noticeably the position of the maximum, but it does affect the value of 

TCmax" This conclusion is consistent with the experimental data* [Z-4] 

If B film is not size-quantizing, the critical temperature is des-

cribed by Eq. (31), or Eq. (38) (if r << <w>; r << Tc>• In this case 

p is described by Eq. (34) and depends very significantly on La• The 

quantity r depends on La also (see Eqe (6'), (32)), but the dependence 

p(La) is more essential. The dependence p on La leads to monotonic 

decrease of Tc with an increasing in le• If 6 is size-quantizing filM, 

the situation changes drastically (see Sec. V). 
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V. SIZE QUANTIZATION 

1. Density of States 

According to Eqs. (31), (32), Tc depends on the function ra8» 

which (see Eq. (6)), is coupled directly with the density of the states 

of the non-metallic film. 

Consider now a realistic situation when semimetal '(or semiconductor) 

film is size-quantizing. As is well-known (see, e.g., review[ 10]) the 

size quantization (SQ) is very sensitive to the structure of the film and 

to the quality of its surface. The best conditions for SQ are realized 

in semimetal film, where a number of factors (such as low electron densi-

ty, and a small value of the transverse effective mass) cause the de 

Broglie wavelength to exceed greatly the atomic distance and it is this 

which makes the surface, in fact specular. 

SQ is observed experimentally by the investigation of the films of 

Bi[6,7], Sb[BJ, InSb[9]. The observation of this effect in thin 

metallic films is also possible (see, e.g., Refs. [25,26]), but is 

considerably more complicated. 

Consider a thin semimetal (or semiconductor) film. SQ results in 

+ 
the situation, when the energy E(K,n) is determined by the longitudinal 

two-dimensional quasimomentum t and by the transverse quantum number n. 

Instead of a Fermi surface we have a group of two-dimensional subbands. 

The density of states can be written in the form (see e.g., Ref. 

[10]). 



··". 
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-1 m ... ( i :1)1/2 m ,m 
1 2 

(42) 

The summation is taken over the filled suhbands; r is the number of 

two-dimensional valleys. The dispersion relation has ih the effective 

mass ~p~~ximation the following form: 
·~ .. 

... (42') 

If only one subband is filled, the density of states is equal to: 

v .... r (43) 
a 

Indeed if only one subband is filled, the number of states in the 

region K, K+dK is equal to 4~KdKS/(2~h) 2 (S is the area of the film; 

2 
E = K /2m). The density of states (per unit volume) is equal to v = 

mL-l/~~(L is the thickness of the film) and decreases with increase 

of L. If the film is characterized by several filled subbands with the 

dispersion relation Eq. (42 1
) and by several valleys, we come to Eq. (42)e 

The number of filled subbands v depends on the electron 

concentration "n". If n < L-3, only the lowest subband is filled 

(more exact conditions are given below.) For example, in Bi films only 

one subband remains filled up to L- 5•102 A. The film, which remains 

a three-dimensional system in the coordinate space (L )) a) becomes a 
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two-dinensional system in the momentum space, and this results in a 

peculiar behavior. 

An increase of L leads to a decrease of the distance between 

transverse levels. When L becomes equal to some value Lc, the next 

subband begins to be filled, and this is accompanied by a jump of the 

density of states. Rene~ the density of states is an oscillating 

function of L.£10,27,28] 

The oscillations of the density of states v6 result, according to 

Eqs. (6), (31), (32), and (42) in a non-monotonic dependence 

Tc(Ls)• The values Lsc correspond to jumps of the density of 

states. They depend on the dispersion relation. To estimate their 

values we use the simple model, when the longitudinal motion is 

described by the relation 

£ = K
2/2m ; ~tll) = 3n2h 2/2m1 L~ (44) 

(the potential box or the quantization Kl = nhn/Ls)• The second 

subband begins to be filled if La satisfies the condition 

where £F is the Fermi level. 

It is necessary to take into account the fact that KF = 

(2; tF)l/2 also depends on L8• The electron concentration n is 
' 

2 2 
equal to n a KF/2nh LB. Therefore: 

2 
KF • 2 n 

(44') 

(44") 
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Based on Eqs. (44) - (44"), we ohtain the following value for 

(1) - 1/3 L = a ('r!/rn1 n) Rc 
. , a == 1.7 (45) 

If the condition nts3 < (;/mi) (see Eq. (45)) is satisfied, only the 

lowest subband is filled. Let us estimate the value Lac( 2
), which 

corresponds to the next rapid change of Tc• Generally speaking, 

values of the masses for different subbands can be different. 

Solving the equation 

fiE( 2) ... 

(46) 

- 1/3 

AL = a(~!) (47). 

where a, b, c- 1 (in the model of the box a~ 1.7~ b ~ 1.4, c ~ 0.6) •. For 

example, AL ~ 30 A for Sb films.[8,10] The quantity fiL in the Bi 

films can be changed in the region 102 A < AL < 4•102 A depending on 

the structure of the tilm.£6] We see that fiL * L1 and the oscilla-

tions are aperiodical. 
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2. Non-Monotonic Reh:lVior of Tc 

.The critical temperature is rlescribed by Eqs. (26), (31), and (40). 

If the "B" film is a semimetal (or semiconductor) film with SQ, the 

densities of states Va and vs are described by Eq. (33) and Eq. 

(42). 

SQ results in the situation when p and, consequent'ly Tc change 

step-wise. If Ls becomes equal to Lsc(l) (see Eq. (45)), va 

increases very rapidly and this leads to a rapid decrease of Tc• The 

detailed picture of the dependence Tc(Ls) varies with the conditions 

of the experiment. Consider the case when the ratio La/La = const. 

If La< Lac(l), the quantity vs decreases with the increase of 

Ls (see Eq. (42)), and one can observe an increase in Tc (of course, 

it always holds that Tc < Tc'). When La becomes equal to 

Lac(l) va makes a step-wi~e increase, and Tc decreases, accord-

ing to Eq. (31) (if r >> Tc)• Hence an appearance of a maximum of 

Tc is possible. This second maximum differs from the maximum of Tc 

in the region La - a (see Sec. III) by its nature. The subsequent 

increase of La in the region Ls ) Lsc(l) again leads to a de-

crease of va and an increase of Tc, and this continues until La = 

Lac(2), and so on (see Fige 4). Hence SQ leads to the possibility 

of oscillations of Tc• 

If La • const ( t:ds case corresponds to the typical experimental 

situation; see Refs. [1-4]), then (see Eqs. (32'), (42)) 

(48) 

... 
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(cf. (Eq. (34)), where v0 is the number of filled subbands 

We would like to emphasize, that SQ leads to peculiar dependence 

p(La) (cf. Eq. (34)). According to Eq. (48), p(Ls) is a step-wise 

function, and, if La < Lec(l) or L~c(l) < Ls < Lec(2) 

etc. (see Eq. (45), (47)), the quantity p does not depend on La at 

all. Then the dependence Tc (La) is caused only by the 'dependence 

r(Le) (see Eqs. (6'), (38), it is assumed, that r << <w>). According 

to Eqs. (6'), (32), (38), the increase of Le results in increase Tc• 

This increase continues until La = Lec(l). Then we get v0 = 2, 

and Tc makes a step-wise decrease and so on. Hence the dependence 

Tc(Le) becomes non-monotonic. 

Moreover, if r >> <w>, one should use Eq. (39). Then an increase 

of Ls does not affect Tc until the decrease of rea (see Eq. (6')) 

gradually results in situation, when r < <w>. Then the dependence 

Tc(La) is described by Eqs. (31), (38), and (40), and Tc(L8) 

becomes the increasing function. Therefore, SQ leads to a nonmonotonic 

dependence Tc(Ls). Note, .that the distance between the maximum Tc 

in the region La - a (see Sec. III) and the maximum Tc, if La = 

Lsc(l), is not equal to the period of oscillation, because they have 

different origins. As is known (see e.g., Ref. [10]) the thin film can 

be size-quantizing if its thickness La > 10 A, and, hence, the des

cribed increase of Tc.can be observed, if La> 10 A. Therefore, Tc 

has a minimum in the region La - 10 A. 
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The non-monotonic dependence Tc(La) (see Sec. III, Eqs •. (6'), 

(38), and (48)) has been observed experimentally (see Fig. 1) by the 

investigation of the Mo, Te, V films covered by c[2] and the systems 

Al-Sio[3] and Pb-Si.[4] (For a general description of the 

experimental situation see Ref. [32]. The oscillations in the region 

Ls ) 10 A are observed only in those cases, when the B films are 

semiconductor or semimetal). Note that SQ is not a universal phenomenon 

~nd it is very sensitive to the structure of the films (see, e.g., Ref. 

[10]). It is not surprising that the increase of Tc(La) has not 

been discovered by the investigation of some systems (e.g., Pb-Ge, 

Pb-c,l 4l Tl-Ge and Sn-Ge[ll). In the absence of SQ, Tc decreases 

with increased La, in accordance with Eqs. (34) and (38). Of course, 

it is necessary to have the information about phonon and electron 

spectra of the films. Then it is possible to make the detailed 

comparison with experimental data.[l-4] We present the theoretical 

dependence Tc(Le) (see Fig. 5) for some values of the parameters. 

The quantity rBa is described[!!] by Eq. (6') (see also Ref. [22]). 

The S-N sandwiches with Cu and Ag normal layers have been studied in 

Ref. [12]. According to measurements in,[l2] the best description of 

the experimental data is obtained, if the values rMBa are: rMBa 

• 8 mv (La~ 100 A) rMBa ~ 4 mv (La = 200 A), rMBa = 2mv 

(La • 400 A, cf Eq. (6')),where rMBa _ rBa for metallic film. 

' 
We discussed the method of obtaining the value rBa (see IV.2), which 

can be applied, if B film is SM or SC film also. It is possible to 

estimate the Sa ( Sa -values rsQ rsQ = rBa for size-quantizing 

film), using Eq. (6') and data:[12] 
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* Here m1 and m1 are the effective transverse masses of the 

metallic and SM (or SC) films. We consider the case, then only the 

lowest subband is filled and PF. - ;rfl/Ls; in the metal film PF- tda. 
1 

* . The smallness a/Lf3 can be compensated by the ratio m.tlm1 • For 

example, in Bi film m1 = 0.01 me• If, for instance La = 75 A, the 

value rBa in Bi film is rBa - 15 mv. We present the theoretical 

dependence Tc(La) (see Fig. 5) for some values of the parameters. 

3. Charge Density Waves 

SQ results in appearance of the peculiar charge density waves. This 

problem has been considered by Kokotov and author in Ref. [29]. This 

kind of instability can affect the properties of S-SM and s-se systems. 

Consider the case, when only the lowest subband is filled. The film 

is characterized by the Fermi line (see above, Sec. V.1). If several 

subbands are filled, there is a set of Fermi lines. A perfectly 

realistic situation is one in which the Fermi line has linear sections.· 

For example, the curvature radius of the definite sections of the Fermi 

line in Bi films (see [6]) is larger than the dimension of the Fermi line 

itself and even the dimension of the Brillouin Zone. These sections can 

be regarded as straight lines with high degree of accuracy. 

' 
The electron-phonon interaction leads to the instability of the 

lattice in the presence of the linear sections of the Fermi line.£29] 

The calculation of the polarization operator 
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IT(q) = 2i j dpG(p+q/2) G(p-q/2) 

leads to the expression[29] 

which contains the logarithmic singularity (it is assumed that the 

linear section corresponds to the region fKxl < q0 ). The presence 

of a logarithmic singularity in n leads to the appearance of an 

imaginary pole in the phonon Green function D = D0 -1 - g IT ge 

(gt • (1 + Vn)-1) (see e.g., Ref. [30]) and to lattice instability. 

The temperature Tp, which eorresponds to the appearance of static

deformation waves and the structural transition is 

T ~ 
p 

(49) 

(50) 

The considered SM and SC films are characterized by a small value 

of tF (e.g., for Bi films tp = 10-2 eV) relative to tF of metals. 

That is why the value Tp is small (Tp ~ 1°). The minimum of the 

resistance, which was observed in an experimental investigation of thin 

Bi films in the low temperature region,[31] is described by Eq. (50). 

. .. 
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The temperature T == Tp is characterized by the appearance of a 

static-deformation wave. If T > Tp, the gradual decrease of T leads 

to the softening of the phonon modee Because of smallness of Tp in 

the SX and SC size-quantizing films, one can consider the situation when 

Tc of the S-SM or s-se system is larger than Tp• Then the region 

T '""'Tc is characterized by the existence of low phonon mode, and this 

results in an increase of the constant describing the electron-phonon 

interaction in the "13" film. The value of this constant can exceed the 

value of the Coulomb pseduopotential and the effective constant AS 

becomes different from zero. 
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VI. THE CASE AS * 0 

Previously we considered the case g~ ""' 0. Suppose that film "8" 

is characterized by a non-zero value of ga• More exactly, it means 

that the value of the effective constant A~ describing the electron-

phonon interaction in film "8" exceeds the value of the Coulomb pseudo-

potential JJ*· Then one should write the following equations T "" Tc; 

cf. Eqs. (7) and (8) 

where the additional term is equal to: 

"" 'if T 1 
w '>O n 

J dw g (w) 
e 

Equation (52) can be written in the form: 

where 

2 
R = r 'if T I 

13« (!.)' 

n 

f dw g ( w) __ w__ .. 
8 2+w2 

w n' 
2 

(!.) t 
n 

(51) 

(52) 

(53) 

(54) 

(55) 
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.Therefore, we see that Eq. (54) for the function C~ contains, 

besides the usual term (see Eq. (8)), the additional term R. 

Substituting then Eqs. (54) and (55) into Eq. (51) and performing 

calculations by analogy with the derivation of Eqo (13) 5 we arrive at 

the following equation: 

where 

Here 

1 ... 21f T L 
w )0 

n 

K(w ) 
n 

... 1 
S(w ) 

n 

2'1f T 

+ 

1Jl2 f dw g (w) --
6 2 ....... 2 W-rw, 

n 

According to Eqs. (4) and (5), we obtain 

K(w ) 
n (56) 

0 (57) 

1 . ---------------------2 a 6 w ,z (w ,)Z (w ,)S(w ,) n n n n 

(58) 

(59) 

. ., 
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According to Eqs. (13), (15), (57) and (59), Eq. (56) can be 

reduced to the form: 

where 

r 
1 ""' f dw g (w) ln 2wy - ~ L 

a 'II'T r a 

L 
i 

c 

r r 
+ aB Sa L L 

r2 a 13 

"' 2'11' r T 

i = {a,a} 

Using Eq. (19) and summing in Eq. (61) over Wn» we obtain 

T c 
ln-

T' 
c 

r . . 
= -~ f dw·g (w) f(w,r,T ) 

A r a c 
a 

(60) 

(61) 

(62) 

+ 
raaraa f dw g (w) f(w,r,T ) • f dw g (w) f(w,r,T ) 

A r2 a c B c 
a 

where (cf. Eqs. (26) and (27)) 

f(w,r,T ) 
(!)2 ln 2ry + 

r2 ln 2wy (63) ... 
c w2+r2 'II'T w2+r2 'II'T c c 

and T ' c is defined by·Eq. (19); it is assumed that r >> Tc• 
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Equation (62) can be written in the form: 

where 

T c 
ln-- = 

T' c 

2y<u>a 2y<u>8 
ln---ln---

The quantity u is defined by Eqs. (30), (35), and <u>i denotes the 

mean value in the sense 

If r << <w>a» r << <w>a then <u>t = r (see above). Then 

(64) 

(65). 

(66) 

The critical temperature can be evaluated from Eq. (64). Note that the · 

terms on the right-hand side of Eq. (64) have opposite signs. Therefore 

the inequality AS * 0 results in an increase of Tc relative to the 

situation, when AS = 0. 

If, for example, As is small. {TcS << Tea; AS o:= 

ln-l(<w>a/TcB)) and raB << r, the increase of Tc due to the 

second term on the right-hand side of Eq. (64) is equal to: 

AT 
c -- :\ r aS (ln 2ry ) 2 

13 r 1rT 
c 

(67) 
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The smallness of the factor Aeraa/r is compensated to some 

extent by the large logarithmic factor (ln 2ry/nT)2. If, for example, 

<w>a "" 10 mV, Ta,c ""' 10-3", r a.a/r "'0.1, r /Tc""" 10, we obtain 

(6Te,/Tc) ""' 5%. Hence, we see that the inequality AB "1: 0 leads to 

an increase of Tc• 
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VII. DISCUSSION 

The considered S-SM and s-se systems are characterized by a number 

of parameters. A variety of the parameters allows one to change the 

properties and, first of all» Tc in the desired direction. 

The critical temperature of S-SM and S-SC systems in the presence 

of size quantization is described by Eqs. (19), (31), (41) and (48). 

In the absence of SQ one should use Eq. (34) instead of Eq. (48). 

The relation Tc' > Tea is caused by the change of the phonon 

spectrum (see Sec. III). On the other hand, the proximity effect tends 

to decrease the critical temperature. SQ leads to oscillations of the 

density of states and, hence, to oscillations of Tee The combination 

of the mentioned factors results in complex non-monotonic dependence 

Tc(Ls)• The estimates (see above) show that the quantitative change 

of Tc can be very noticeable. Equations (19), (29)-(32'), (48) allow 

to carry out the detailed calculations. These equations express the 

value of Tc in terms of measured quantities. Namely, the value of 

Tc depends on the function g(w) and the properties of the dispersion 

relation of film in•the presence of SQ • 

. As is well-known, there are several m~thods, allowing to determine 

the function g(w). The most powerful method is the method of tunnel 

spectroscopy. A very interesting investigation was carried out by 

Chaikin, Arnold and ~nsma.[l2] The authors of Ref. [12] have studied 

the system superconductor-normal metal. They took advantage of the 

p~oximity effect· to get information about the quantity An describing the 

~lectron-phonon interaction (EPI) and the phonon spectrum of normal metal. 
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A similar investigation of semimetal and semiconductor films would be 

very interesting. One can get the same inte~esting information about 

the EPI and the phonon spectrum in these types of solids. Moreover, the 

change of the thickness of the oxide (see, e.g., Ref. [33]) allows one 

to get information about the function ~(1) (see Sec. III). 

Investigation o~ the dispersion relation in size-quantizing thin films 

is a very interesting problem. This problem was discussed by B. Kokotov 

and the author in Ref. [29]. As was mentioned above, in the presence of 

SQ, electrons are characterized not by the Fermi surface, but by the 

Fermi line. The Fermi line can differ from the usual section through a 

three-dimensional Fermi surface because of the specifics of the film 

state brought about by sputtering conditions and, moreover, because, 

strictly speaking, the transverse quasimomentum is not defined for these 

thin films. One can suggest (see Ref. [29]) several methods (e.g., 

investigation of sound adsorption in a magnetic field, absorption of an 

electromagnetic field, and so on) which allow one reconstruct the Fermi 

line by using experimental data. The development of this direction is 

important, because it allows one to study the properties of the film 

state. In our case, it will be possible to calculate the density of 

states v6 and the corresponding contribution to the change Tc• 

The best conditions for observations of SQ are realized in the SM and 

SC films. In principle, it is possible, although more complicated, to 

observe SQ in thin metallic films.[2S,26] The effect of SQ on Tc 

was considered by Blatt[27] and by Tavger and the author.[28] 
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It is supposed in this paper that the metallic film is not size

quantizing. SQ of the metalic film with a number of filled subbands can 

also affect Tc of s-se and S-SM systems. This additional mechanism 

was conside~=d in Ref. [38]. It was assumed that it is possible to 

separate the variables, and this corresponds to the specular reflection. 

The change of Tc is caused by the boundary conditions.[38] This 

mechanism is not connected with oscillations of the density of states of 

SM or se films and with EFI and is very sensitive to the quality of the 

metallic film. 

We have discussed (see above) the effect of different factors on 

the dependence Tc(Ls)• The non-monotonic dependence TeCLa) was 

observed experimentally. A whole set of experimental data can be 

explained in terms of the present theory (see Sec. IV.3, and VI). 

Hence,we see that the investigation of S-SM and s-se systems in the 

presence of SQ leads to the possibility of the peculiar change of Tc• 

The development of this direction and subsequent experiments promise to 

be very interesting. 

Summary 

1. We have considered S-SM and s-se systems containing thin super

conducting and semimetal (or semiconductor) films. Using the method of 

the thermodynamic Green function, we considered the influence of the 

proximity effect, the ,size quantization and the change of the phonon 

... 
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2. The dependence of Tc on the thickness of non-metallic films 

is non-monotonic. One can observe Tc in the region La-· a. 
max 

3. Equation (31) describing Tc in the framework of the phonon 

model in the presence of the proximity effect has been obtained. The 

peculiar dependence Tc (dbar) was discussed. 

4. The size quantization leads to oscillations of Tc(Ls)• 

5. The features of the dispersion relation in a size-quantizing 

film, the appearance of the charge density waves were discussed. 

6. The increase of Tc caused by the inequality AS * 0 was 

considered. 

7. The experimental data are discussed. It will be interesting 

to carry out new experiments (see Sec. VI). 

p 
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FIGURE CAPTIONS 

Fig. 1. The temperature self-energy parts. 

Fig. 2. Universal function y(t), y = u/r, t = w/r. 

Fig. 3. Functional dependence Tc(Le) for a) 1- Al-Sio[3J, La= 21A; 

2- Mo-c[2], La= 60A; 3- Te-diamond£21, La= 50A, 

b) Al-Si[3J., La= 70A, c) 1- Pb-Cef41, 2- Pb-Si[4], 

~Tc ... Tc - Tea• 

Fig.4. The dependence Tc(L8)(La/Le = const, ~c • Tc/Tca, r = 

f/Tca, ~c' = Tc'/Tca) for parameters: p(La = 20A) = 0.05, 

f(La = 20A) = 40, 'A'/A. = 0.02, <w> /Tea= 102. 

Fig .. S. Transition temperature Tc versus La (L11 =. con~tant) for: 

-a) p ... o.os, r(Le ... 30A) = 10, (>..1/'A) = 0.09, <w>/Tca = 15; 
..,; 

b) p ... o.os, r(La ... 20A) ... 20, >..1/'A = 0.01, <w>/Tca = 150; 

c) p ... 0.1, r(La .... 2oA) = 10, A.1/A. = 0.04, <w>/Tca = 102. 
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